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The factors bringing about the irreversible distortion or degeneration of a 
continuously forced standing internal gravity wave in a linearly stratified fluid are 
studied experimentally and theoretically. For a rectangular container there is 
strong evidence that the process is initiated by the unstable growth, from a 
subliminal level, of free wave modes forming triads in second-order resonant 
interaction with the original wave. These free modes grow by de-energizing the 
original wave and may collectively induce kinematical conditions sufficiently 
severe to create localized regions of density discontinuity within the fluid, 
leading to turbulence. 

Although the possible free wave modes are doubly infinite in number, the geo- 
metrical constraints greatly reduce the number of possibilities for resonant triads. 
In  many cases this permits critical wave amplitude to be predicted by considera- 
tion of one triad only, and the results are in excellent agreement with experiment. 

It is speculated that a closely similar process explains observations by Malkus 
(1968), Aldridge & Toomre (1969), and McEwan (1970) in the analogous context 
of inertial oscillation of contained rotating fluids. 

1. Introduction 
Energy absorption and dissipation by means of internal gravity waves is 

increasingly recognized as being an important influence in the large-scale dis- 
tribution of momentum and heat in the ocean and the atmosphere, but although 
a large body of literature has accumulated on the behaviour of such waves at  
small amplitudes, the kinematical details of how they deform at large amplitudes 
and become effective in energy dissipation is far from complete. 

The present study is part of a programme directed at  filling in some of these 
details for continuously stratified media in which the motion is partly or 
completely wave induced. It concerns the evolution of a standing internal 
gravity wave fully bounded within a rectangular container, when continuously 
forced near resonance. 

The only previously published work along similar lines was by Thorpe (1968) 
who found that if the forcing was strong enough localized ‘turbulence’ occurred. 
This, he associated with shear across internal wave rays originating at the wave 
makers. No limitation on possible wave amplitudes was established and the cross 
modes which characterize the ‘breaking’ of surface standing waves (Taylor 1953) 
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were not observed although the presence was noted of waves of frequency unequal 
to the forcing frequency. 

For the present study a trial experiment was performed in which a standing 
wave in weak linearly stratified salt solution was continuously forced to gradually 
increasing amplitude. Above a specific amplitude the wave became progressively 
distorted, but unless the forcing was particularly violent the process was orderly 
and repeatable. In all cases the creation of true turbulence was preceded by the 
occurrence of localized regions of strongly intensified density gradient, and this in 
turn was, with one exception, preceded by the visible emergence of other free 
wave modes bearing individually no simple relation to the original. Even when 
the wave pattern was severely distorted an obvious symmetry or antisymmetry 
was conserved, and in some cases the modulating waves became dominant over 
the original without turbulence appearing at any time. 

In this paper a theory is developed and convincingly verified explaining the 
initial stages of the degeneration process as being an unstable resonant wave 
interaction in which a pair of free wave modes are selectively amplified from a sub- 
liminal (noise) level, each energized by the interaction of the other with the original 
forced wave. Viscosity acts to dissipate the transferred energy; so there exists for 
a given forced wave a critical amplitude below which degeneration does not occur. 

For travelling-wave systems, the theory of resonant interaction has been 
thoroughly explored. Among the analyses more closely relevant to the present 
case are those by Thorpe (1966) and Simmons (unpublished work, see Martin, 
Simmons & Wunch (1969)) for internal waves in continuous stratification. The 
interaction between a forced pair of travelling internal waves has been demon- 
strated experimentally by Martin et al. (1969). Mutual interaction mechanisms 
similar to the present one have been proposed to explain the progressive dis- 
tortion of surface waves (Benjamin & Fier 1967) and internal waves on a diffuse 
interface between miscible fluids (Davis & Acrivos 1967). Craik (1968) noted the 
existence of a strong interaction exciting oblique waves from a travelling surface 
wave in a shear flow. McGoldrick (1970) demonstrated the unstable interaction 
of a suitably tuned capillary-gravity wave with its own second harmonic, under 
the action of viscous damping. 

For the purpose of quantitatively verifying the theoretical analysis, the 
present experiment shares with McGoldrick’s the benefit of well-defined inter- 
action modes, but permits viscous dissipation to be estimated with greater 
accuracy. To reveal internal gravity wave interaction the standing-wave con- 
figuration possesses distinct advantages, in simplicity and unambiguity of 
measurement, over travelling-wave configurations. Indeed it offers promise of 
considerable fruitful theoretical and experimental exploration, although for the 
present study interest was necessarily confined to the initial stages of interaction, 
when the unstable modes are weak. 

The selective mutual interaction demonstrated here may well be, within the 
constraints of viscosity, an ubiquitous feature in the dynamical behaviour of 
waves, particularly when the motion is bounded. One case in point bearing a 
dynamical resemblance to the present one, and exhibiting a close correspondence 
in the evolution of the instability, is that of inertial oscillations in a uniformly- 
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rotating closed container. No detailed analysis has yet been made but an exami- 
nation (not given here) of orders of magnitude in the experiments of Malkus 
(1968), Aldridge & Toomre (1969) and McEwan (1970) shows consistency with a 
similar interaction mechanism. 

2. Analysis 
2.1. Pirst-order resonant solution for a standing wave 

Liquid with density p(z) and an undisturbed weak linear density gradient 
dpldz = ph completely fills a rectangular container of height H ,  length L and 
breadth B. Co-ordinates x and y are in the length and width directions, and 
originate at the centre plane on one lower corner of the tank. 

The end wall remote from the origin comprises a plane paddle oscillating 
sinusoidally at frequency w through a small angle 2a about an axis (L, y ,  4 H ) .  
In  its mean position the paddle occupies the plane x = L. 

With the Boussinesq approximation the equations for motion in the x, z plane 

where II., = u, - I ) - ~  = w, the horizontal and vertical 
J is the Jacobian determinant, and g is gravitational 
expressed as : 

and 

components of motion, 
acceleration. Density is 

A ,  is the amplitude of an individual modej in units of stream function. 
Combining equations (l), to first order in amplitude 

where s2 = (-phg/p,(O))*, the buoyancy frequency. Consider now the initial 
stages of motion when paddle oscillation is started. 

t > 0, 
For 

(4) 
l i / , = O  at z = O , H ,  

a, cos ( N m l H )  sin ot, at x = L, 
$n= [? 

0, a t  x = 0. 

where a, is defined by the triangular displacement of the paddle: 

0 N even 
= { - 4awH/(+N2), N odd. 

By il Laplace transform treatment roughly equivalent to that of Baines (1  967) 
equations ( 3 )  and ( 4 )  give the following resonantly forced modes, 

28 

+sin (ot)  . (xm3!2%-2w-2cos (mz) - sin (mx))}. (5) 
F L M  50 
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For resonance (assumed in deriving the above expression) the forcing fre- 
quency must be such that the dispersion relation 

n2/m2 = ( Q2 - w2)/w2 (6) 

is satisfied, wherein the horizontal and vertical wave-numbers m and n are 
prescribed by the boundary conditions to repeat the streamline pattern M times 
in the horizontal length L and N times in the vertical height H .  Thus m = Mn/L,  
n = N n / H ;  114 and N are integers. Through (6), m is defined by N and the series in 
(5) is absolutely convergent like N-3. 

The initial rate of growth in amplitude of an individual member @j of such a 
resonant set is then dAj/dt  = Wjbj, 

where b .  3 = ( -  1)'ja,njw3/Lm~Q2 (7) 

and $j = A j s j ,  sj = sinmxsinnzcoswt. (8) 

2 .2 .  Viscous dissipation and terminal amplitude 

To calculate the terminal amplitude of a steadily forced standing wave in a 
liquid of low viscosity, an energy integral approach is used, for reasons which will 
become apparent. 

Near to the container boundaries motion is nearly tangential and dominated by 
viscous stress. Provided the dimensionless amplitude A/wH2 is small enough and 
boundary layers are sufficiently thin, tangential gradients can be neglected and 
vertical and horizontal motion equations simplify to 

1 (9) 
(Ui - U ) t  + vuyy = 0, 

(Wi - W)tt  + VWyyt  - a y w i  - w) = o,t 
where subscript i denotes interior motion. y is the surface normal co-ordinate. 
Effects of salt diffusivity are neglected. 

The solutions, subject to the boundary conditions 

u(0) = w(0) = 0, 

u(y+oo)+ui = ucoswt, 

w(y  -too) + M$ = w cos wt, 

are 
and 

u = U,(cos wt - e-7 cos (wt - q) )  
w = W,(cos wt + sect cos (wt  + at) ) ,  

where 7 = yR)/2hH, 

and 

R is a dissipation parameter, defined by 

E = * 1, Q S w .  

t I am indebted to M. McIntyre and J. Hart for pointing out the importance of strati- 
fication in this equation. 
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Stratification does not alter the horizontal velocity profile, but changes the 
scale of the vertical velocity profile, for an external free wave motion, by a 
factor equal to the ratio of horizontal to vertical wave-number. Dissipation per 
unit area through the boundary layer is 

Average level in time is 
pwH(u: + nw:/m)/2.24R. 

Using the inviscid free-mode description (8) to define u,, ~ ~ ( 2 ,  z),  the mean 
energy dissipation rate within the boundary layers due to an individual mode j is 

pHAj2w 
O j = m Z %  (HZ(mn + n2) + 2BHm + n2n2BL),. 

Equation (8) is used also to approximate the internal field under the influence 
of viscosity. Integration of the complete dissipation function over the container 
volume and time averaging gives, for the internal dissipation rate 4, 

to first order, 
The inviscid growth rate (7) defines the rate at which a wave orthogonal in 

phase to the paddle acquires its energy. To find the terminal amplitude of a 
damped wave this rate is equated to the total mean dissipation rate. The energy 
in an individual mode of free oscillation $ri = A j s j  is 

E. = 1 ( ( 8 s / & ~ ) ~ +  ( 8 s / 8 ~ ) ~ ) A ~ d B ,  4 
or, with (8), Ej = QpA,2BLH(m2 + n2)j. (14) 

We define a gross dissipation function Gi which includes the above dissipation 
terms and any others, say Pi, arising under specific experimental conditions, i.e. 

Gi = (C+I+.P) j /pA,2~iH.  

Now the interior motion of a resonant standing wave is defined to second order 
in amplitude (Thorpe 1968) and to order B-4 by the inviscid form 

@ = A sin mx sin nz sin (wt + $), (15) 

where $ is phase relative to paddle displacement. 
If both forcing and dissipation are weak, equations (7) and (12) to (15) may be 

combined in the form of an energetic balance, to give for the variation in ampli- 
tude of a wave forced near resonance 

dA/d t  = wb sin $ - TA/(m2 + n2), (16) 

where T is defined as 4wG/BL. Using this formulation the terminal amplitude 
A ,  = wb sin $(m2 +n2)/T under continuous forcing, and decay rate without 
forcing (b  = 0) ,  may be determined. 

28-2 
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Ifthere exist together anumber of small-amplitudefreemodes of the form of (15), 
their orthogonalityguarantees that, within the order ofthe approximations made, 
each may grow and decay independently of the others. For a given fundamental 
mode amplitude A, ,  

and ATN = N-2A,1 C,/GN for a given phase where N = 1,3,5, etc., is the vertical 
modal number. 

Normally the contribution of the highest harmonic modes to the net observed 
motion will be small. For the present case, only 'odd' resonant modes at  equal 
frequency are forced by the paddle, andwith LIH = 3.58, B/H = 0.7 w / n  = 0.488, 
R = 6.8 x lo4, the increase in measured terminal amplitude at  (#L, 4B, 3.H) is 
2.5 yo. It is noteworthy that on a laboratory scale internal dissipation becomes 
comparable with wall dissipation for N of order 10. 

H N  = N2Hl, IN = N411 (17) 

2.3. Resonant interaction 

If it is supposed that the motion is composed of a number h of elements (rj7 
equations (I) might be combined in the form: 

j=L k , l = h  

2 ([v2$1tt + n2$zz)j = 5 (; J(@k, &)z - J ( v 2 @ k ,  $t ) t ]  

+ E higher order terms. (18) 
The homogeneous solution of this equation admits free modes of the form (15), 

whose frequency and spatial wave-number ratio are related by (6). Thorpe used a 
similar form with k = 1 to deduce the finite-amplitude distortions to a standing 
internal wave. The first summation on the right-hand side constitutes the forcing 
of individual modes j by the second-order interaction of pairs of other modes 
k and 1. 

If the modes forced do not satisfy the dispersion equation (6), their amplitude 
will be defined by the interaction product of the forcing components on the right 
hand. However, if the periodicity in space and time required by (6) is reproduced 
by a pair of interacting free modes a third individual free mode may be resonantly 
forced by the interaction. Denoting lCp2 and @g as such an interacting triad the 
conditions for second-order resonant interaction are then 

Ma= kiM,+J43, 1 (19) 
NZ = k N1 f N3, 

= $olkw37 ( I w j l  6 n)7 
and (NLIMH)? = ( Q 2 - ~ ' ) / w 2  (j = 1 ,2 ,3 ) ,  

where M and N ,  as defined after (6) are horizontal and vertical modal numbers. 
Thus though the possible free modes are doubly infinite in number, there exists at 
most a singly infinite set of discrete values of LIH for which this kind of inter- 
action is possible. 

In  the present context only one free mode @ (and its harmonics) is forced 
externally. Other free modes must exist at  a subliminal (noise) level but can only 
grow in pairs k2, k3 by interaction; a single mode could not grow in isolation since 
(6) would then be violated by the requirement that wave-numbers in all dimen- 
sions be half those of the main mode. 
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For a given LlH the interacting triads most closely satisfying (19) can be 
identified unambiguously by graphical methods. It is found (see table 1, $3.2) 
that two or more triads containing the forced main mode may be close to satis- 
fying these equations, but for the present it is presumed that all interacting 
triads satisfying the equations exactly possess unique and diflerent values of LIH. 
Attention is confined here to these specific geometries. 

We nominate $, as the initial forced resonant mode and $, and $3 as the 
triad partners. Early in the sequence energy interchange must be small and 
interacting modes may be represented by the appropriate homogeneous solution 
of weakly time dependent amplitude, e.g. 

4, = A,(t)sinmlxsinn,xcosw,t, d2A,/dt2 < A,w:. 

The interaction products forming the right-hand side of (18) are evaluated, viz. 

= a,, A ,  A ,  sin (m, + m3)z sin (n, + n3)z sin (0, + u3)t + other terms, 
[gIHJ($k, Pdz- J(v2$k, $dtIk,l=1,3 

(20) 
where 

813 = Q(min3-m3nl) [(m:+nn4-m,2-n3 (wl+w3)+  (m1+m3) (ml/wl-m,/w3)Qz]. 

Equivalent expressions for IS,, and S,, are found by substitution. 
Say now that the part $, of $ forced by the above interaction term has tfhe 

$2 = A,(t) f , ( t )  sinm,zsinn,z, form 

itself satisfying the tangentiality conditions at the container boundaries, then 
substitution in (18) gives, in part, 

dA df 
= - S l , A , A , s i n ( w l + w 3 ) t - 2 ~  at at - (mi+ni)  (21) 

for those components for which mz = ml+m,, n, = nl+n3. However, if in 
satisfaction of the last of (19) the eigenvslue of the homogeneous equation 
wg = Q%:/(mg + nz) = (wl + w3),, then the right-hand side of (21) must vanish and 

dA,/dt = X13 A1A,/2(m: + n3w2 (22) 

and 

Similarly, 

f = cos (w, + W 3 ) t .  

dA3/dt = X,, A ,  A2/2(m,2 + n;)w3, etc. (23) 

Mutual enhancement of the subliminal modes $,, $3 will occur if 

8 1 2  - 8dwz% > 0. 

In  the presence of viscosity, energy acquired by interaction is opposed by 
dissipation. Because of the orthogonality of the modes, the dissipation rate of 
each mode depends on its own amplitude, and, by analogy with (16), simul- 
taneous equations for the evolution of amplitude may be written: 
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for the subliminal modes, and 

(25) 
( m ; + n ; ) A  dA = (m~+n~)o,b,sinq5,+X23A2A3-T,A,, 

at 2% 

for the original, forced mode. For the initial stages A,A3 is small and, if A ,  has 
already acquired a terminal amplitude, equations (24) combine to predict a 
simultaneous exponential growth of A ,  and A,  provided 

A,  = A,, 2 A,, E ~(T,T~w,w~/&&)+.  (26) 

It should be noted that the above formulation strictly applies when phase 
relationships between participating modes are defined only by the interaction. 
This is the case when L / H  is such that (19) are exactly satisfied, but otherwise 
prevails only in the initial stages of growth of the subliminal modes. However, 
there is no immediate reason to question the validity of (26) in relation to the 
present experiments. 

Clearly there is scope for further study of damped interaction particularly in 
relation to finite amplitude limit states for the participating modes and (in view 
of the plurality of triads of similar resonance LIH) ,  behaviour off resonance, 
with or without more than one interacting triad. This is reserved for separate 
investigation. 

3. Experiments 
Experiments were performed in a ‘Perspex’ walled tank 1.83m long, 0.23m 

(=  B )  wide. One end was bounded by a paddle pivoting about a horizontal axis 
0.163 m above the bottom plane, and sealed with felt around its edges. A movable 
vertical plate also sealed with felt formed the other end of a test section. The 
paddle could be oscillated through & 0.1 rad by means of a disconnectable rod 
0.54m long, on a crank of adjustable stroke, turned via a gear box by an elec- 
tronically controlled d.c. motor whose speed was regulated approximately 

0.2 yo to a level variable to 0.1 %. 
The tank was filled with linear stably stratified common salt solutions created 

in a method similar to that proposed by Oster (1965)) but in an apparatus capable 
of making exponentially stratified solutions in large volumes. A description will 
be given elsewhere. Stratifications so produced were linear within the limits of 
resolution of the measuring device, between 5 yo of the total density difference for 
the weakest stratification, ph/p = 1.24 x lo-, m-l, and 2 yo for the strongest, 
p;/p = 2-9 x 10-lm-l. 

The tank was filled slowly from a retractable bottom inushroom opening where 
dye solution was injected at  intervals to form sharp coloured layers throughout 
the depth. After filling, cetyl alcohol was deposited in solution with ether on the 
free surface to inhibit evaporation and the attendant convectively-mixed surface 
layer, and to further suppress conduction effects of 1-3 ern sheet of polystyrene 
was floated on the surface. The top surface was therefore virtually plane and 
rigid. 

Stratifications would remain linear within a centimetre or so of top and bottom 
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for many days, though the dye was diffuse after a day. The confined depth H was 
0-326 m in all tests. 

Motions within the fluid were measured at a position (&L, &B, ++E) where L is 
confined length, using a probe comprising a fine wire fork on a 2mm tubular 
sting, bearing an S.T.C. type U23UD miniature thermistor bead. The probe 
assembly was spray coated with vinyl lacquer to prevent stray cusrents 
and electrolysis. Calibration was performed for each test by oscillating the 
probe in still water about its measuring position, in a near-horizontal arc of 
large radius, at the same frequency as the motion to be measured. The probe 
formed one arm of a d.c. constant-temperature bridge, and the output (variation 
in thermistor current) was monitored on a pen recorder. By varying the arc 
length, a range of equivalent horizontal oscillations was calibrated for each test. 
In  comparison with directly measured particle movements the calibration was 
nearly logarithmic down to 2-5 mm/sec, and accuracy was good (about 1 %). 

The phase of the motion relative to the paddle oscillation was determined by 
timing the interval between change in sign of the time derivative of thermistor 
bridge output (corresponding t o  a velocity minimum at the probe) and a fixed 
phase event in the paddle motion. This method, made necessary by the long 
oscillation periods involved, is vulnerable to aliasing and time-constant errors, 
but these were minimized by calibration procedure, and phase of minimum velo- 
city was considered accurate to & 2". 

Visualizations were by unfocused shadowgraph using a tungsten source. Wave 
amplitudes measured on the shadowgraph screen, corrected for parallax, agreed 
closely with thermistor measurements. 

3.1, Steady resonant waves 

Experiments were confined mainly to a configuration where the M = 2, N = 1 
mode (subsequently referred to as 2/1) and its harmonics (2N/ lN,  N odd) were 
forced near resonance. Contained lengths L were 243H and 3.58 L with resonant 
frequencies 0.5 i2 and 0.488 s2 respectively. 

The procedure was to engage the rod on the paddle with the crank turning at  
present stroke and speed. When the recorded amplitude and phase appeared 
stable, either stroke or speed were changed to cover a range in a and q5. Each test 
was terminated by disengaging the rod and recording the decay in amplitude of 
the free oscillation. 

The rate of decay in amplitude is increased slightly in the presence of the 
measuring probe and small asperities on the tank surface, the most important 
being bubbles accumulating on the polystyrene lid. 

Probe and top dissipation could be corrected for by running decay tests with 
two probes, and without the top, in which state the cetyl alcohol film presented an 
almost-rigid top boundary. 

In the range of internal velocities experienced, small bluff asperities were 
expected to exhibit a drag coefficient proportional to  velocity to approximately 
the inverse half power (Hoerner 1953). Expressed as an addition to the rate at 
which a free oscillation will decay, the correction to T in (1 7) is 

AT cc Atw4R-a. (27) 
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Since it was not practicable to perform interference tests in each experiment, 
results were corrected on the basis of the above formula, for which the constant of 
proportionality was determined from the results of a single test. Side and bottom 
asperities were not corrected for. 

Figure 1 shows the decay in amplitude of a free mode MIN = 211, 

LIH = 3-58, R = 6.8 x lo4. 

Amplitude is expressed in units of dimensionless stream function Q = A / w H 2  and 
is corrected for harmonic mode decay, using (17). Q is plotted against number of 
cycles after the cessation of forcing. R is based on the mean viscosity v of the 
solution, variations in which were usually insignificant. The theoretical line 
drawn includes the correction term, (27). Agreement is very close. The apparent 
scatter in the results is caused by transient waves created by crankdisengagement. 

2 x  10-21  1 I I 
0 10 20 30 

Cycles tw/2n after cessation of forcing 

F I Q ~ E  1. Decay in amplitude of a single free wave mode, M = 2, N = 1 ; L = 3.58 H, 
H = 32-6 om, R = 6.8 x lo4. 0, experiment; -, theoretical, including correction for probe 
and top dissipation. 

Figure 2 plots the mean decay constant per cycle of oscillation as a function of 
dissipation parameter R, compared with the theoretical prediction. Here it is the 
experimental points which have the above correction applied, since the amplitude 
range varied from test to test. Agreement is again close, with the apparent 
upward inflexion of the result at highest R being associated with the emergence 
of instability in the boundary layers, clearly visible in shadowgraphs. 

In  figure 3 the steady terminal amplitudes of oscillation, as measured by 
thermistor for numerous tests with L = 2 H J 3 ,  are presented as an amplitude- 
phase locus. For presentation the amplitude is normalized using (16) with the 
theoretical value of G substituted. Agreement is satisfactory apart from an 
apparent phase error of about 10" occurring as the oscillation lead ahead of paddle 
motion becomes small. 
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Figure 4 gives amplitude and phase history for a single test during which the 
forcing frequency was changed several times. Frequency, as a fraction of the 
natural frequency given by ( 6 ) ,  is marked on the figure. Also marked is the 
theoretical amplitude evolution computed using (16). The computed points are 
corrected for harmonic mode contribution, assuming constancy of phase relative 
to the fundamental. 

The effect of phase error at low q5 is clearly apparent, but otherwise (16) is 
adequate to desoribe the evolution. 

R = oHZ//v 

~ I Q T J ~ ; ~  2. Dependen00 of decay rate on dissipation parameter R for a single free wave. 
0, experiment, corrected for dissipation with top and probe; -, theoretical. 

I .o 
AT/AT(# = 

FIGURE 3. Amplitude-phase locus of a steady, continuously forced M / N  = 211 mode. 
Theoretical line is from (16). A, V, = 1.43 sec-l; +, +, 0.305 sec-1; D y  4, -, 1.37 
see-l ; x , m, 1.35 8ec-l; A, 0.483 see-l. 
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~ l w  resonant 

1.002 I 0.996 1 0.992 I 1.014 I 1.022 

Cycles 

FIGURE 4. Amplitude and phase history for a continuously forced M / N  = 211 mode. 
!2 = 2wresomnt = 1.43 sec-I, R = 7.15 x 10': - - - , measured amplitude; - - , measured 
phase, 4. -, calculated amplitude using (30) and measured phase. Forcing frequency 
w as a fraction of resonant frequency is marked on top scale. 

3.2. Modes of resonant instability 

It was found in the execution of the steady-wave experiments that after the 
oscillation had been sustained for some time, the shadowgraph wave form, a 
indicated by the dyed layers, became increasingly modulated by other waves of 
frequency different from the forcing frequency. A precursor to this visible 
evidence appeared on the pen-traces of thermistor bridge output (which, because 
of the logarithmic response, was very sensitive to modulation of the minimum 
speed record). This was immediately followed by perceptible modulation of 
recorded maximum speed, and phase. Figure 5 (plate 1) is a photograph of the 
recorder trace and figure 6 (plate 2) a sequence of shadowgraphs, taken con- 
currently, of an MIN = 211 oscillation forced at a = 0.031; w = 0.499 f2 = 0.65 
sec-1. In  figure 5 the co-ordinate scales are speed maximum and phase of mini- 
mum speed in advance of paddle motion minimum. Time is expressed in cycles 
after commencing excitation. The stages marked ( d ) ,  ( e )  and (f) correspond with 
figures 6 ( d ) ,  (e) and (f). The symmetry of the wave distortion is striking. No true 
turbulence appeared during the test period and in these figures the motion 
remained completely two-dimensional over the interior region width. 

Stronger forcing gave rise to more abrupt instability, frequently with a dif- 
ferent combination of modulating waves. Figure 7 (plate 3) presents a sequence 
for similar conditions to those of figure 6 but with a = 0.0575. True turbulence, 
as viewed on the shadowgraph, had a characteristic vermiculate appearance and 
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was always preceded by the extensive formation of sharp density discontinuity 
layers, or ‘traumata’. These appeared to arise from two separate kinds of dis- 
turbance. In  the first, the isopycnic dyelines could be seen to be overturned with 
a subsequent collapse to produce a local gradient intensification. In the second, 
as common, kind there appeared to be no overturning, but the trauma first 
showed itself as a nearly vertical short line or collection of lines in a region where 
the principal compressive strain was near horizontal and large. Also present in 
such regions there frequently appeared diagonal radial lines aligned roughly in 
the planes of maximum shear rate. These vanished when the motion reversed and 
thus seemed not to be ‘traumatic’ to the stratification. The more pronounced 
diagonal lines on the right-hand side of figure 7 ( d )  are an accumulation of the 
first kind of traumata and were possibly assisted to appear by characteristic rays 
of short internal waves from the wave maker, though the almost concurrent 
appearance on the left side of similar traumata suggested that the wave maker 
was not responsible for any pronounced asymmetries. The diagonal lines near the 
centre at the left of the same figure are those associated with the second kind of 
disturbance. The traumata seemed to be ‘contagious’, tending to spread in 
consecutive cycles of oscillation in groups around the original discontinuity. 

The faint linest at  the right and left of figure 7 (c) are evidently the result of a 
side wall boundary-layer instability. Similar cross flow ‘roll waves ’ could be seen 
also on the end walls of the tank. There was nothing to suggest that these waves 
had any significant effect on the interior motion. 

For a set of tests in which the tank length was held constant at  2 H J 3  the 
forcing frequency w was varied over a range resonantly exciting fundamental 
modes M / N  from 111 to 5/1. The components of unstable modulation of each of 
these modes were then identified by finite Fourier analysis of dyeline photo- 
graphs. This quantified the magnitude of waves of individual horizontal and 
vertical modal number at an arbitary time. In  corroboration the measured period 
of modulation on the maxima and minimum of the speed-record traces, with 
equation ( G ) ,  defined a finite set to which the dominant unstable modes belonged. 
Combined, these observations identified the unstable modes with a high degree of 
certainty. 

Table 1 compares the modes predicted to comply most closely with (19)$, and 
pairs of the strongest unstable modes identified experimentally. Without excep- 
tion the latter, listed in order of frequency of occurrence, are members of the 
theoretically predicted triads. In  addition to these, unforced N = 1 modes were 
usually present. To quote one example, for an MfN = 2/1 mode, weakly forced, 
the five largest vertical modal amplitudes at  the instant of photographing were 

MIN = 211: 0.074H; 616: - 0.014 H ;  415: - 0.009 H ;  
611 : 0.0089 H ;  4/1: 0.0080 H .  

The tendency for the emergent unstable triads to differ under strong or weak 
main-mode forcing is worth noting. For strong 311 mode forcing the emergence 

t Note added in proof: These are barely perceptible in the reduced figures, but appear 
as closely spaced lines in the right and left quarters, sloping downwards towards the out- 
side. 

$ Predictions were based on the quality of the correspondence of o2 + w3 with ol. 
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of 211 and 1/2 modes appeared to be associated with starting transients, and 
transients may have predetermined the interaction for other strongly forced 
tests. In the 311 case the interesting situation arose where those large wavelength 
unstable modes de-energized the forced mode without traumatic distortion 
occurring at any time, while with weaker forcing, givingrise to 614,313 instability, 
distortion and turbulence could be precipitated. 

In the case of the simplest (111) mode, forcing had to be strong before any 
irreversible distortion appeared, and even then the modulating modes could not 
be identified photographically. For this particular case the critical amplitude 
A,, in (26) is complex, and there is therefore implicit confirmation that no un- 
stable interaction should occur. Subsequent to the emergence of traumata, 
modulation having the predicted frequency appeared on the thermistor record. 
When traumata first appeared the dimensionless amplitude Q = A/H% was 
0.170. 

Predicted unstable modes 
A 

1 

%/fi M 3 P 3  %/a ( % + W , ) l f i  
0.163 3/8 0.108 0.975* 
0.127 5/10 0.143 0.974* 
0.277 415 0.225 1.005 

0.339 315 0.171 1.020 
0.397 313 0.277 1.031 
0.500 l/2 0.143 0.982 
0.359 515 0.277 0.972 
0.500 212 0.277 1.028 

0.500 415 0.225 0-959 
0.610 314 0.212 1.000 
0.559 212 0.277 1.017) 

Observed 
unstable modes 

TABLE 1. Comparison of closest theoretical unstable modes, with those observed. 
* (&'12.&'13/w2w23) < 0 ;  see text. t Implied from 
recorded trace periodicity. 

t Turbulent degeneration. 
Strong forcing of main wave. 

Except in this last example, the primary instability was recognizably inter- 
active, and the unstable modes identified all possessed a frequency less than that 
of the forced mode, confirming Hasselmann's (1967) prediction. 

If forcing was sustained at a supercritical level the distortion of the wave profile 
became increasingly complex, till the primary modulations were unrecognizable, 
though (excepting the 3/1, 2/1, 112 interaction) the forced mode was still domi- 
nant. The intensity of the modulation waxed and waned but there was no evidence 
that the unstable modes were interacting to re-energize the forced mode. 

Except when forced to a level where intense true turbulence occurred, the 
density stratification appeared to have suffered very little modification after the 
motion had been allowed to decay. There was shadowgraph evidence that, on 
some occasions, local intensification of the density gradient had occurred at  
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several levels throughout the depth, but such steps were too weak to be resolved 
by conductivity sounding. When turbulence had been forced for a protracted 
period the density gradient was slightly weakened, most notably near the top 
and bottom boundaries. 

3.3. Quantitative limits to instability of a 211 mode 
To test quantitatively the predictions of Q 2.3 a container geometry of 

L / H  = 3.58 

was used, for which the triad MIN = 211, 616, 415 closely satisfies (19). In view 
of the long testing times involved, there was only one practical technique in 
finding the limiting amplitude A,, for the forced 2 / l  mode at  the onset of in- 
stability. This was to force the mode to a supercritical level and then, by reducing 

0.01 
104 los 

R = wHa/v  

FIGURE 8. Amplitude threshold for interactive instability of a M / N  = 2/1 oscillation, as a 
function of dissipation parameter R. Theoretical: -, given by (26). Experiment: 0 ,  
degenerate 616 and 415 mode oscillation oould be sustained at a deteotsble level; 0, 
degenerate modes would not be sustained without increasing main mode amplitude. 

the stroke of the paddle, lower the amplitude gradually till the unstable modes 
could not be sustained at a level perceptible on the thermistor pen record. As 
mentioned earlier, the minimum velocity recorded is very sensitive to super- 
imposed motion. By this means A,, was found for a number of tests with dif- 
ferent density gradient (and hence R), within very close limits. 

Figure 8 presents the results in comparison with the theoretical prediction 
derived from (26), frequencies being defined according to the fourth of (19), and T, 
and T3 obtained using a value of G determined from the sum of internal and 
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boundary dissipation (12) and (13), but excluding probe dissipation. On this 
figure the solid points represent the lowest levels a t  which the modulating waves 
could be sustained, and the open points are the highest levels when they were not. 

Agreement with the analytic prediction is remarkably good over the whole 
experimental range, and testifies to the adequacy of the formulation of the 
interaction equations , and of the method of estimating dissipation. Evidently the 
assumption of linear independence between the modes is justified, as the presence 
of non-cancelling interactions would contribute greatly to boundary-layer 
dissipation. Neglect of the non-linear probe dissipation terms in T, and T,, which 
vanish more rapidly than A ,  and A,, is also justified. 

As a matter of procedural simplicity the results presented in figure 8 were all 
obtained with the forcing frequency adjusted to maintain the maximum energi- 
zation rate (4  z 90”). Nothing in the experiments suggested that q5 influenced 
Al, to an appreciable degree, and symmetry of the observed waveforms sug- 
gested that wave maker induced asymmetries were insignificant. 

4. Critical conditions for wave breaking 
These experiments were initially intended to provide a well-defined internal 

wave field, for the purpose of testing kinematical criteria for the ‘breaking ’ of 
such waves. It has succeeded instead in showing the importance of interactive 
instability, but the original purpose should not be forgotten. 

On the basis of the visible sequence of events it would appear, in the initial 
stages of the interactive instability, that apart from weak viscous effects no 
irreversible ‘traumatic ’ distortion necessarily occurs. The discrete and abrupt 
appearance of density-discontinuity traumata at a second stage suggests that in 
combination, the forced mode and its parasites do eventually exceed some 
kinematic conditions in localized regions. These regions then become more 
numerous because the traumata produced contribute to the kinematic distortion 
elsewhere. Evidence for this is the tendency for the traumata to spread most 
rapidly along directions at the characteristic angles 

The next stage in the breaking process is the creation of ‘true ’ turbulence which 
evidently results from the complex distortions induced by the traumata. The most 
that should be stated in describing this stage is that, as viscosity vanishes in 
importance, turbulence must inevitably follow the appearance of the traumata. 

It is up to the second stage that hope remains of being able to calculate the 
critical kinematical conditions. The present experiment generally proves 
inappropriate because a multiplicity of modes of changing strength makes 
description of the motion field very difficult. (Experiments are presently in 
progress using a more suitable configuration.) An exception however, is the 111 
mode, for L/H = 2 4 3 ,  which ‘broke ’ without interactive instability. As a 
matter of interest the magnitudes of some of the potentially important para- 
meters were calculated, using the first-order steady-field description,t (8) , for 
the fundamental mode and its first three harmonics, and (5) (to define harmonic 
phase relationship), (12), (13) and (17). 

arctan lm/nl. 

t Accurate to second order in Q (Thorpe 1968). 
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From pen records and photographs, the dimensionless amplitude Q1 of the 
fundamental mode immediately prior to the appearance of traumata, was 
0.170. Estimated harmonic mode amplitudes were 

Q ~ ,  1.95 x 10-3, 

Q ~ ,  2-17 x 10-4, 

Q,, 4.9 x 10-5. 

The gross Richardson number Ri defined as (Qlpeak vorticity)2, i.e. 

Ri = Q2(w x QN k(X)N2(m: + 
N=1,3,5,7 

was 4.72, where k = ( -  1)(N--1)/2. The maximum isopycnic surface slope 8, 
occurring at (+L, y, +H)  and given by 

was 7.S0, agreeing well with photographs. Here 

The internal Froude number, defined as I$ = ( 6 j ~ H ) ~  where 6 is maximum 
horizontal velocity, was 0.3 1. Evidently, neither Ri, $nor l$ approachvalues that 
are critical in other, better-understood situations. Ri would be lowered slightly 
if based on local (BL, y ,  +H)  dynamic vertical density gradient p8, but since I!? is 
only 7.8" the effect must be small. 

Thus the question of which, if any, of the above parameters is important 
remains unresolved, the difficulty being that all, in the present context, depend 
on a single quantity Q1. 

5. Conclusion 
The present work has shown the existence of a limit to the amplitude of a 

steadily forced standing internal gravity wave in a fully bounded continuously 
stratified fluid, beyond which it will suffer a progressive and destructive dis- 
tortion of form. Provided forcing is not too vigorous, the process primarily 
responsible is a resonant-interactive instability in which pairs of initially sub- 
liminal free wave modes are selectively amplified. With rectangular boundary 
geometry, the interacting modes are uniquely defined by the ratio of container 
length to depth, and if wH2/v is high, analytic description is simple and accurate. 
This has permitted an experimental verification of resonant-interaction theory 
quantitatively more accurate than in other previously published studies. 

It has been found experimentally that a two-dimensional wave may suffer 
considerable distortion without the emergence of cross oscillation. If the net 
motion induced by the forced wave and its modulating modes is sufficiently large, 
traumatic distortion of the density field occurs in the form of localized regions of 
sharply increased density gradient. This evidently precedes the appearance of 
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true turbulence. Kinematic conditions leading to traumatic distortion seem to be 
realized more easily in the presence of interactive instability, but the present 
experiments were unsuitable for resolving these conditions. 

This work was done as a guest of the C.S.I.R.O. during the tenure of a Queen 
Elizabeth I1 Research Fellowship. Acknowledgement is gratefully given. Thanks 
are also due to Drs F. K. Ball and R. Smith for their comments on the manuscript. 
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FIGURE 5. Photocopy of amplitude and phase records for M / N  = 2/1 oscillation forced a t  
CL = 0.031; o1 = 0.499 = 0.65 sec-l. Photos in figure 6 ( d ) ,  ( e )  and (f) were taken a t  the 
positions marked. Time is expressed in cycles of oscillation after commencement of forcing. 
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